The fatiando package has been deprecated. Please check out the new tools in the Fatiando a Terra website:

GravMag: 2D gravity inversion for the relief of a basinΒΆ

Download source code:

GravMag: 2D gravity inversion for the relief of a basin
from fatiando.inversion import Smoothness1D
from fatiando.gravmag.basin2d import PolygonalBasinGravity
from fatiando.gravmag import talwani
from fatiando.mesher import Polygon
from fatiando.vis import mpl
from fatiando import utils
import numpy as np

# Make some synthetic data to test the inversion
# The model will be a polygon.
# Reverse x because vertices must be clockwise.
xs = np.linspace(0, 100000, 100)[::-1]
depths = (-1e-15*(xs - 50000)**4 + 8000 -
          3000*np.exp(-(xs - 70000)**2/(10000**2)))
depths -= depths.min()  # Reduce depths to zero
props = {'density': -300}
model = Polygon(np.transpose([xs, depths]), props)
x = np.linspace(0, 100000, 100)
z = -100*np.ones_like(x)
data = utils.contaminate(talwani.gz(x, z, [model]), 0.5, seed=0)

# Make the solver using smoothness regularization and run the inversion
misfit = PolygonalBasinGravity(x, z, data, 50, props, top=0)
regul = Smoothness1D(misfit.nparams)
solver = misfit + 1e-4*regul
# This is a non-linear problem so we need to pick an initial estimate
initial = 3000*np.ones(misfit.nparams)
solver.config('levmarq', initial=initial).fit()

mpl.subplot(2, 1, 1)
mpl.plot(x, data, 'ok', label='observed')
mpl.plot(x, solver[0].predicted(), '-r', linewidth=2, label='predicted')
ax = mpl.subplot(2, 1, 2)
mpl.polygon(model, fill='gray', alpha=0.5, label='True')
# The estimate_ property of our solver gives us the estimate basin as a polygon
# So we can directly pass it to plotting and forward modeling functions
mpl.polygon(solver.estimate_, style='o-r', label='Estimated')