fatiando.gravmag.normal_gravity
)¶Gravity of ellipsoid models and common reductions (Bouguer, free-air)
Reference ellipsoids
This module uses instances of
ReferenceEllipsoid
to store the
physical constants of ellipsoids.
To create a new ellipsoid, just instantiate ReferenceEllipsoid
and give it
the semimajor axis a
, the flattening f
, the geocentric gravitational
constant GM
, and the angular velocity omega
.
All other quantities, like the gravity at the poles and equator,
eccentricities, etc, are computed by the class from these 4 parameters.
Available ellipsoids:
WGS84
(values taken from Hofmann-Wellenhof and Moritz, 2005):
>>> from fatiando.gravmag.normal_gravity import WGS84
>>> print(WGS84.name)
World Geodetic System 1984
>>> print('{:.0f}'.format(WGS84.a))
6378137
>>> print('{:.17f}'.format(WGS84.f))
0.00335281066474748
>>> print('{:.10g}'.format(WGS84.GM))
3.986004418e+14
>>> print('{:.7g}'.format(WGS84.omega))
7.292115e-05
>>> print('{:.4f}'.format(WGS84.b))
6356752.3142
>>> print('{:.8f}'.format(WGS84.E)) # Linear eccentricity
521854.00842339
>>> print('{:.15f}'.format(WGS84.e_prime)) # second eccentricity
0.082094437949696
>>> print('{:.10f}'.format(WGS84.gamma_a)) # gravity at the equator
9.7803253359
>>> print('{:.11f}'.format(WGS84.gamma_b)) # gravity at the pole
9.83218493786
>>> print('{:.14f}'.format(WGS84.m))
0.00344978650684
Normal gravity
gamma_somigliana
: compute the normal
gravity using the Somigliana formula (Hofmann-Wellenhof and Moritz, 2005).
Calculated on the ellipsoid.gamma_somigliana_free_air
: compute
normal gravity at a height using the Somigliana formula plus the free-air
correction \(-0.3086H\ mGal/m\).gamma_closed_form
: compute normal
gravity using the closed form expression from Li and Gotze (2001). Can
compute anywhere (on, above, under the ellipsoid).Bouguer
bouguer_plate
: compute the
gravitational attraction of an infinite plate (Bouguer plate). Calculated
on top of the plate.You can use fatiando.gravmag.prism
and fatiando.gravmag.tesseroid
to calculate the terrain effect for a better correction.
References
Hofmann-Wellenhof, B. and H. Moritz, 2005, Physical Geodesy, Springer-Verlag Wien, ISBN-13: 978-3-211-23584-3
Li, X. and H. J. Gotze, 2001, Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66(6), p. 1660-1668, doi: 10.1190/1.1487109
fatiando.gravmag.normal_gravity.
ReferenceEllipsoid
(name, a, f, GM, omega)[source]¶Bases: object
A generic reference ellipsoid.
It stores the physical constants defining the ellipsoid and has properties for computing other (derived) quantities.
All quantities are expected and returned in SI units.
Parameters:
The semimajor axis (the largest one, at the equator). In meters.
The flattening. Adimensional.
The geocentric gravitational constant of the earth, including the atmosphere. In \(m^3 s^{-2}\).
The angular velocity of the earth. In \(rad s^{-1}\).
E
¶Linear eccentricity
GM
¶Geocentric gravitational constant (including the atmosphere)
a
¶Semimajor axis
b
¶Semiminor axis
e_prime
¶Second eccentricity
f
¶Flattening
gamma_a
¶Normal gravity at the equator
gamma_b
¶Normal gravity at the poles
m
¶\(\omega^2 a^2 b / (GM)\)
omega
¶Angular velocity
fatiando.gravmag.normal_gravity.
bouguer_plate
(topography, density_rock=2670, density_water=1040)[source]¶Calculate the gravitational effect of an infinite Bouguer plate.
Note
The effect is calculated on top of the plate.
Uses the famous \(g_{BG} = 2 \pi G \rho t\) formula, where t is the height of the topography. On water (i.e., t < 0), uses \(g_{BG} = 2 \pi G (\rho_{water} - \rho_{rock})\times (-t)\).
Parameters:
The height of topography (in meters).
The density of crustal rocks
The density of ocean water
Returns:
The computed gravitational effect of the Bouguer plate
fatiando.gravmag.normal_gravity.
gamma_closed_form
(latitude, height, ellipsoid=<fatiando.gravmag.normal_gravity.ReferenceEllipsoid object>)[source]¶Calculate normal gravity at a height using the closed form expression of Li and Gotze (2001).
Parameters:
The latitude where the normal gravity will be computed (in degrees)
The height of computation (in meters). Should be ellipsoidal (geometric) heights for geophysical purposes.
ReferenceEllipsoid
The reference ellipsoid used.
Returns:
The computed normal gravity (in mGal).
fatiando.gravmag.normal_gravity.
gamma_somigliana
(latitude, ellipsoid=<fatiando.gravmag.normal_gravity.ReferenceEllipsoid object>)[source]¶Calculate the normal gravity by using Somigliana’s formula.
This formula computes normal gravity on the ellipsoid (height = 0).
Parameters:
The latitude where the normal gravity will be computed (in degrees)
ReferenceEllipsoid
The reference ellipsoid used.
Returns:
The computed normal gravity (in mGal).
fatiando.gravmag.normal_gravity.
gamma_somigliana_free_air
(latitude, height, ellipsoid=<fatiando.gravmag.normal_gravity.ReferenceEllipsoid object>)[source]¶Calculate the normal gravity at a height using Somigliana’s formula and the free-air correction.
Parameters:
The latitude where the normal gravity will be computed (in degrees)
The height of computation (in meters). Should be ellipsoidal (geometric) heights for geophysical purposes.
ReferenceEllipsoid
The reference ellipsoid used.
Returns:
The computed normal gravity (in mGal).