The fatiando package has been deprecated. Please check out the new tools in the Fatiando a Terra website: www.fatiando.org

Source code for fatiando.gridder

"""
Create and operate on grids and profiles.

**Grid generation**

* :func:`~fatiando.gridder.regular`
* :func:`~fatiando.gridder.scatter`

**Grid operations**

* :func:`~fatiando.gridder.cut`
* :func:`~fatiando.gridder.profile`

**Interpolation**

* :func:`~fatiando.gridder.interp`
* :func:`~fatiando.gridder.interp_at`
* :func:`~fatiando.gridder.extrapolate_nans`

**Padding**

* :func:`~fatiando.gridder.pad_array`
* :func:`~fatiando.gridder.unpad_array`
* :func:`~fatiando.gridder.pad_coords`

**Input/Output**

* :func:`~fatiando.gridder.load_surfer`: Read a Surfer grid file and return
  three 1d numpy arrays and the grid shape

**Misc**

* :func:`~fatiando.gridder.spacing`

**Point scatter generation**

* :func:`~fatiando.gridder.circular_scatter`

----

"""
from __future__ import division
import numpy
import scipy.interpolate
import math


[docs]def load_surfer(fname, fmt='ascii'): """ Read a Surfer grid file and return three 1d numpy arrays and the grid shape Surfer is a contouring, gridding and surface mapping software from GoldenSoftware. The names and logos for Surfer and Golden Software are registered trademarks of Golden Software, Inc. http://www.goldensoftware.com/products/surfer Parameters: * fname : str Name of the Surfer grid file * fmt : str File type, can be 'ascii' or 'binary' Returns: * x : 1d-array Value of the North-South coordinate of each grid point. * y : 1d-array Value of the East-West coordinate of each grid point. * data : 1d-array Values of the field in each grid point. Field can be for example topography, gravity anomaly etc * shape : tuple = (nx, ny) The number of points in the x and y grid dimensions, respectively """ assert fmt in ['ascii', 'binary'], "Invalid grid format '%s'. Should be \ 'ascii' or 'binary'." % (fmt) if fmt == 'ascii': # Surfer ASCII grid structure # DSAA Surfer ASCII GRD ID # nCols nRows number of columns and rows # xMin xMax X min max # yMin yMax Y min max # zMin zMax Z min max # z11 z21 z31 ... List of Z values with open(fname) as ftext: # DSAA is a Surfer ASCII GRD ID id = ftext.readline() # Read the number of columns (ny) and rows (nx) ny, nx = [int(s) for s in ftext.readline().split()] shape = (nx, ny) # Read the min/max value of columns/longitude (y direction) ymin, ymax = [float(s) for s in ftext.readline().split()] # Read the min/max value of rows/latitude (x direction) xmin, xmax = [float(s) for s in ftext.readline().split()] area = (xmin, xmax, ymin, ymax) # Read the min/max value of grid values datamin, datamax = [float(s) for s in ftext.readline().split()] data = numpy.fromiter((float(i) for line in ftext for i in line.split()), dtype='f') data = numpy.ma.masked_greater_equal(data, 1.70141e+38) assert numpy.allclose(datamin, data.min()) \ and numpy.allclose(datamax, data.max()), \ "Min and max values of grid don't match ones read from file." \ + "Read: ({}, {}) Actual: ({}, {})".format( datamin, datamax, data.min(), data.max()) # Create x and y coordinate numpy arrays x, y = regular(area, shape) if fmt == 'binary': raise NotImplementedError( "Binary file support is not implemented yet.") return x, y, data, shape
[docs]def regular(area, shape, z=None): """ Create a regular grid. The x directions is North-South and y East-West. Imagine the grid as a matrix with x varying in the lines and y in columns. Returned arrays will be flattened to 1D with ``numpy.ravel``. .. warning:: As of version 0.4, the ``shape`` argument was corrected to be ``shape = (nx, ny)`` instead of ``shape = (ny, nx)``. Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * shape Shape of the regular grid, ie ``(nx, ny)``. * z Optional. z coordinate of the grid points. If given, will return an array with the value *z*. Returns: * ``[x, y]`` Numpy arrays with the x and y coordinates of the grid points * ``[x, y, z]`` If *z* given. Numpy arrays with the x, y, and z coordinates of the grid points Examples:: >>> x, y = regular((0, 10, 0, 5), (5, 3)) >>> x array([ 0. , 0. , 0. , 2.5, 2.5, 2.5, 5. , 5. , 5. , 7.5, 7.5, 7.5, 10. , 10. , 10. ]) >>> x.reshape((5, 3)) array([[ 0. , 0. , 0. ], [ 2.5, 2.5, 2.5], [ 5. , 5. , 5. ], [ 7.5, 7.5, 7.5], [ 10. , 10. , 10. ]]) >>> y.reshape((5, 3)) array([[ 0. , 2.5, 5. ], [ 0. , 2.5, 5. ], [ 0. , 2.5, 5. ], [ 0. , 2.5, 5. ], [ 0. , 2.5, 5. ]]) >>> x, y = regular((0, 0, 0, 5), (1, 3)) >>> x.reshape((1, 3)) array([[ 0., 0., 0.]]) >>> y.reshape((1, 3)) array([[ 0. , 2.5, 5. ]]) >>> x, y, z = regular((0, 10, 0, 5), (5, 3), z=-10) >>> z.reshape((5, 3)) array([[-10., -10., -10.], [-10., -10., -10.], [-10., -10., -10.], [-10., -10., -10.], [-10., -10., -10.]]) """ nx, ny = shape x1, x2, y1, y2 = area assert x1 <= x2, \ "Invalid area dimensions {}, {}. x1 must be < x2.".format(x1, x2) assert y1 <= y2, \ "Invalid area dimensions {}, {}. y1 must be < y2.".format(y1, y2) xs = numpy.linspace(x1, x2, nx) ys = numpy.linspace(y1, y2, ny) # Must pass ys, xs in this order because meshgrid uses the first argument # for the columns arrays = numpy.meshgrid(ys, xs)[::-1] if z is not None: arrays.append(z*numpy.ones(nx*ny, dtype=numpy.float)) return [i.ravel() for i in arrays]
[docs]def scatter(area, n, z=None, seed=None): """ Create an irregular grid with a random scattering of points. Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * n Number of points * z Optional. z coordinate of the points. If given, will return an array with the value *z*. * seed : None or int Seed used to generate the pseudo-random numbers. If `None`, will use a different seed every time. Use the same seed to generate the same random points. Returns: * ``[x, y]`` Numpy arrays with the x and y coordinates of the points * ``[x, y, z]`` If *z* given. Arrays with the x, y, and z coordinates of the points Examples:: >>> x, y = scatter((0, 10, 0, 2), 4, seed=0) >>> x array([ 5.48813504, 7.15189366, 6.02763376, 5.44883183]) >>> y array([ 0.8473096 , 1.29178823, 0.87517442, 1.783546 ]) """ x1, x2, y1, y2 = area numpy.random.seed(seed) arrays = [numpy.random.uniform(x1, x2, n), numpy.random.uniform(y1, y2, n)] if z is not None: arrays.append(z*numpy.ones(n)) return arrays
[docs]def circular_scatter(area, n, z=None, random=False, seed=None): """ Generate a set of n points positioned in a circular array. The diameter of the circle is equal to the smallest dimension of the area Parameters: * area : list = [x1, x2, y1, y2] Area inside of which the points are contained * n : int Number of points * z Optional. z coordinate of the points. If given, will return an array with the value *z*. * random : True or False If True, positions of the points on the circle will be chosen at random * seed : None or int Seed used to generate the pseudo-random numbers if `random==True`. If `None`, will use a different seed every time. Use the same seed to generate the same random sequence. Returns: * ``[x, y]`` Numpy arrays with the x and y coordinates of the points * ``[x, y, z]`` If *z* given. Arrays with the x, y, and z coordinates of the points """ x1, x2, y1, y2 = area radius = 0.5 * min(x2 - x1, y2 - y1) if random: numpy.random.seed(seed) angles = numpy.random.uniform(0, 2 * math.pi, n) numpy.random.seed() else: da = 2. * math.pi / float(n) angles = numpy.arange(0., 2. * math.pi, da) xs = 0.5 * (x1 + x2) + radius * numpy.cos(angles) ys = 0.5 * (y1 + y2) + radius * numpy.sin(angles) arrays = [xs, ys] if z is not None: arrays.append(z*numpy.ones(n)) return arrays
[docs]def spacing(area, shape): """ Returns the spacing between grid nodes Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * shape Shape of the regular grid, ie ``(nx, ny)``. Returns: * ``[dx, dy]`` Spacing the y and x directions Examples:: >>> spacing((0, 10, 0, 20), (11, 11)) [1.0, 2.0] >>> spacing((0, 10, 0, 20), (11, 21)) [1.0, 1.0] >>> spacing((0, 10, 0, 20), (5, 21)) [2.5, 1.0] >>> spacing((0, 10, 0, 20), (21, 21)) [0.5, 1.0] """ x1, x2, y1, y2 = area nx, ny = shape dx = (x2 - x1)/(nx - 1) dy = (y2 - y1)/(ny - 1) return [dx, dy]
[docs]def interp(x, y, v, shape, area=None, algorithm='cubic', extrapolate=False): """ Interpolate data onto a regular grid. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * shape : tuple = (nx, ny) Shape of the interpolated regular grid, ie (nx, ny). * area : tuple = (x1, x2, y1, y2) The are where the data will be interpolated. If None, then will get the area from *x* and *y*. * algorithm : string Interpolation algorithm. Either ``'cubic'``, ``'nearest'``, ``'linear'`` (see scipy.interpolate.griddata). * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * ``[x, y, v]`` Three 1D arrays with the interpolated x, y, and v """ if algorithm not in ['cubic', 'linear', 'nearest']: raise ValueError("Invalid interpolation algorithm: " + str(algorithm)) nx, ny = shape if area is None: area = (x.min(), x.max(), y.min(), y.max()) x1, x2, y1, y2 = area xp, yp = regular(area, shape) grid = interp_at(x, y, v, xp, yp, algorithm=algorithm, extrapolate=extrapolate) return [xp, yp, grid]
[docs]def interp_at(x, y, v, xp, yp, algorithm='cubic', extrapolate=False): """ Interpolate data onto the specified points. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * xp, yp : 1D arrays Points where the data values will be interpolated * algorithm : string Interpolation algorithm. Either ``'cubic'``, ``'nearest'``, ``'linear'`` (see scipy.interpolate.griddata) * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * v : 1D array 1D array with the interpolated v values. """ if algorithm not in ['cubic', 'linear', 'nearest']: raise ValueError("Invalid interpolation algorithm: " + str(algorithm)) grid = scipy.interpolate.griddata((x, y), v, (xp, yp), method=algorithm).ravel() if extrapolate and algorithm != 'nearest' and numpy.any(numpy.isnan(grid)): grid = extrapolate_nans(xp, yp, grid) return grid
[docs]def profile(x, y, v, point1, point2, size, extrapolate=False): """ Extract a data profile between 2 points. Uses interpolation to calculate the data values at the profile points. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * point1, point2 : lists = [x, y] Lists the x, y coordinates of the 2 points between which the profile will be extracted. * size : int Number of points along the profile. * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * [xp, yp, distances, vp] : 1d arrays ``xp`` and ``yp`` are the x, y coordinates of the points along the profile. ``distances`` are the distances of the profile points to ``point1`` ``vp`` are the data points along the profile. """ x1, y1 = point1 x2, y2 = point2 maxdist = numpy.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) distances = numpy.linspace(0, maxdist, size) angle = numpy.arctan2(y2 - y1, x2 - x1) xp = x1 + distances * numpy.cos(angle) yp = y1 + distances * numpy.sin(angle) vp = interp_at(x, y, v, xp, yp, algorithm='cubic', extrapolate=extrapolate) return xp, yp, distances, vp
[docs]def extrapolate_nans(x, y, v): """ Extrapolate the NaNs or masked values in a grid INPLACE using nearest value. .. warning:: Replaces the NaN or masked values of the original array! Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. Returns: * v : 1D array The array with NaNs or masked values extrapolated. """ if numpy.ma.is_masked(v): nans = v.mask else: nans = numpy.isnan(v) notnans = numpy.logical_not(nans) v[nans] = scipy.interpolate.griddata((x[notnans], y[notnans]), v[notnans], (x[nans], y[nans]), method='nearest').ravel() return v
[docs]def cut(x, y, scalars, area): """ Return a subsection of a grid. The returned subsection is not a copy! In technical terms, returns a slice of the numpy arrays. So changes made to the subsection reflect on the original grid. Use numpy.copy to make copies of the subsections and avoid this. Parameters: * x, y Arrays with the x and y coordinates of the data points. * scalars List of arrays with the scalar values assigned to the grid points. * area ``(x1, x2, y1, y2)``: Borders of the subsection Returns: * ``[subx, suby, subscalars]`` Arrays with x and y coordinates and scalar values of the subsection. """ xmin, xmax, ymin, ymax = area if len(x) != len(y): raise ValueError("x and y must have the same length") inside = [i for i in xrange(len(x)) if x[i] >= xmin and x[i] <= xmax and y[i] >= ymin and y[i] <= ymax] return [x[inside], y[inside], [s[inside] for s in scalars]]
[docs]def pad_array(a, npd=None, padtype='OddReflectionTaper'): """ Return a padded array of arbitrary dimension. The function takes an array of arbitrary dimension and pads it either to the dimensions given by the tuple npd, or to the next power of 2 if npd is not given. An odd reflection with a cosine taper is the author's preferred method of padding for Fourier operations. The odd reflection optimally preserves the frequency content while adding minimal sharp inflections. The cosine taper is a smooth function which also adds few sharp inflection points. .. note:: Requires gridded data of the same dimension as desired (i.e. no flattened arrays; use reshape). .. note:: This function returns a deep copy of the original array. .. warning:: This function returns the coordinate vectors as a list of arrays. This means that even for a 1D input array, the returned vector will be in a list of one element. Parameters: * a : array Array (N-D) to be padded * npd : tuple (optional) Desired shape of new padded array. If not provided, the nearest power of 2 will be used. * padtype : string (optional) String describing with what to pad the new values. Options: [ oddreflectiontaper | oddreflection | reflection | value | lintaper | edge | mean ] oddreflectiontaper - Generates odd reflection then tapers to the mean using a cosine function (Default) oddreflection - Pads with the odd reflection, with no taper reflection - Pads with simple reflection lintaper - Linearly tapers to the mean value - Numeric value. Input a float or integer directly. edge - Uses the edge value as a constant pad mean - Uses the mean of the vector along each axis Returns: * ap : numpy array Padded array. The array core is a deep copy of the original array * nps : list List of tuples containing the number of elements padded onto each dimension. Examples: >>> z = numpy.array([3, 4, 4, 5, 6]) >>> zpad, nps = pad_array(z) >>> zpad array([ 4.4, 3.2, 3. , 4. , 4. , 5. , 6. , 4.4]) >>> print(nps) [(2, 1)] >>> shape = (5, 6) >>> z = numpy.ones(shape, dtype='int') >>> zpad, nps = pad_array(z, padtype='5') >>> zpad array([[5, 5, 5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5], [5, 1, 1, 1, 1, 1, 1, 5], [5, 1, 1, 1, 1, 1, 1, 5], [5, 1, 1, 1, 1, 1, 1, 5], [5, 1, 1, 1, 1, 1, 1, 5], [5, 1, 1, 1, 1, 1, 1, 5], [5, 5, 5, 5, 5, 5, 5, 5]]) >>> print(nps) [(2, 1), (1, 1)] """ # Test to make sure padtype is valid padopts = ['oddreflectiontaper', 'oddreflection', 'reflection', 'lintaper', 'edge', 'value', 'mean'] # API Note: # If one wishes to add more options to the padding, use the following # checklist to make sure all the sections are consistent. # [ ] Docstring (2 spots: the options, and the option descriptions # [ ] padopts - Make sure to add to avoid raising a ValueError # [ ] if statements below - Finally add an elif to the if statements # below. Add a descriptive comment. if str(padtype).lower() not in padopts and not _is_number(padtype): raise ValueError('Pad type not understood') # If npd is not provided, populate with next power of 2 npt = [] nd = a.ndim if npd is None: for ii in range(0, nd): if nd == 1: npt.append(_nextpow2(len(a))) else: npt.append(_nextpow2(a.shape[ii])) else: et = 'Pad dimensions do not match array dims' if nd == 1: if _is_integer(npd): npt.append(npd) else: if len(npd) != 1: raise ValueError(et) else: npt.append(npd) else: if _is_integer(npd): raise ValueError(et) elif len(npd) != a.ndim: raise ValueError(et) else: npt = npd for ii in range(0, len(npt)): if npt[ii] <= a.shape[ii]: raise ValueError( 'Desired padding is less than array ' + 'length along dimension' + str(ii) + '.') # Compute numbers to pad on the left and right side of the array along # each dimension nps = [] for ii in range(0, nd): nps.append((int(numpy.ceil((npt[ii] - a.shape[ii])/2.)), int(numpy.floor((npt[ii] - a.shape[ii])/2.)))) # If it will be needed, compute the mean meanneeded = ['lintaper', 'oddreflectiontaper'] if padtype.lower() in meanneeded: m = numpy.mean(a) # Use numpy's padding routines where possible if _is_number(padtype): # Pad with value ap = numpy.pad(a, nps, mode='constant', constant_values=(float(padtype), float(padtype))) elif padtype.lower() == 'mean': # Pad with the mean ap = numpy.pad(a, nps, mode='mean') elif padtype.lower() == 'lintaper': # Linearly taper to the mean ap = numpy.pad(a, nps, mode='linear_ramp', end_values=(m, m)) elif padtype.lower() == 'edge': # Pad with edge values ap = numpy.pad(a, nps, mode='edge') elif padtype.lower() == 'reflection': # Pad with even reflection ap = numpy.pad(a, nps, mode='reflect', reflect_type='even') elif padtype.lower() == 'oddreflection': # Pad with odd reflection ap = numpy.pad(a, nps, mode='reflect', reflect_type='odd') elif padtype.lower() == 'oddreflectiontaper': # Pad with odd reflection and a cosine taper to mean ap = (numpy.pad(a, nps, mode='reflect', reflect_type='odd') - m) for ii in range(0, nd): ap = numpy.apply_along_axis(_costaper, ii, ap, lp=nps[ii][0], rp=nps[ii][1]) ap += m return ap, nps
[docs]def unpad_array(a, nps): """ Unpads an array using the outputs from pad_array. This function takes a padded array and removes the padding from both. Effectively, this is a complement to gridder.cut for when you already know the number of elements to remove. .. note:: Unlike :func:`~fatiando.gridder.pad_array`, this returns a slice of the input array. Therefore, any changes to the padded array will be reflected in the unpadded array. Parameters: * a : array Array to be un-padded. Can be of arbitrary dimension. * nps : list List of tuples giving the min and max indices for the cutoff. Identical to nps returned by pad_array Returns: * b : array Array of same dimension as a, with padding removed Examples: >>> z = numpy.array([3, 4, 4, 5, 6]) >>> zpad, nps = pad_array(z) >>> zpad array([ 4.4, 3.2, 3. , 4. , 4. , 5. , 6. , 4.4]) >>> zunpad = unpad_array(zpad, nps) >>> zunpad array([ 3., 4., 4., 5., 6.]) """ o = [] for ii in range(0, a.ndim): o.append(slice(nps[ii][0], a.shape[ii] - nps[ii][1])) b = a[o] return b
[docs]def pad_coords(xy, shape, nps): """ Pads coordinate vectors. Designed to be used in concert with :func:`~fatiando.gridder.pad_array`, this function takes a list of coordinate vectors and pads them using the same discretization. .. note:: This function returns a list of arrays in the same format as, for example, :func:`~fatiando.gridder.regular`. It is a list of flattened meshgrids for each vector in the same order as was input. Parameters: * xy : list List of arrays of coordinates * shape : tuple Size of original array * nps : list List of tuples containing the number of elements padded onto each dimension (uses output from :func:`~fatiando.gridder.pad_array`). Returns: * coordspad : list List of padded coordinate arrays Examples: >>> shape = (5, 6) >>> x, y, z = regular((-10,10,-20,0), shape, z=-25) >>> gz = numpy.zeros(shape) >>> gzpad, nps = pad_array(gz) >>> x.reshape(shape)[:,0] array([-10., -5., 0., 5., 10.]) >>> y.reshape(shape)[0,:] array([-20., -16., -12., -8., -4., 0.]) >>> xy = [x, y] >>> N = pad_coords(xy, shape, nps) >>> N[0].reshape(gzpad.shape)[:,0] array([-20., -15., -10., -5., 0., 5., 10., 15.]) >>> N[1].reshape(gzpad.shape)[0,:] array([-24., -20., -16., -12., -8., -4., 0., 4.]) """ coords = [] d = [] coordspad = [] for ii in range(0, len(shape)): if type(xy) is not list: coords.append(xy) elif type(xy) is list and len(shape) > 1: coords.append(xy[ii].reshape(shape).transpose().take(0, axis=ii)) d.append(coords[ii][1] - coords[ii][0]) coordspad.append(_padcvec(coords[ii], nps[ii], d[ii])) M = numpy.meshgrid(*[a for a in tuple(coordspad)[::-1]]) N = [] for a in M: N.append(a.ravel()) return N[::-1]
def _padcvec(x, n, dx): # Used by padcoords to pad an individual vector based on the number # of points on either side and the point spacing xp = numpy.zeros(len(x) + n[0] + n[1]) xp[n[0]:n[0]+len(x)] = x[:] for ii, jj in enumerate(range(0, n[0])[::-1]): xp[ii] = x[0] - ((jj + 1) * dx) for ii, jj in enumerate(range(len(x)+n[0], len(xp))): xp[jj] = x[-1] + (dx * (ii + 1)) return xp def _unpadcvec(x, n): # Takes a vector, x, and a tuple, n, and removes n[0] elements from the # left and n[1] to the right return x[n[0]:len(x)-n[1]] def _costaper(a, lp, rp): # This takes an array and applies a cosine taper to each end. # The array has already been deep copied above. This is by reference only. a[0:lp] = a[0:lp] * _calccostaper(lp)[::-1] a[-rp:] = a[-rp:] * _calccostaper(rp) return a def _calccostaper(ntp): # Used by _costaper to compute a cosine taper from 1 to zero over # ntp points tp = numpy.zeros(ntp) for ii in range(1, ntp + 1): tp[ii-1] = (1.0 + numpy.cos((ii*numpy.pi) / float(ntp))/2.) - 0.5 return tp def _nextpow2(ii): # Computes the next power of two buf = numpy.ceil(numpy.log(ii) / numpy.log(2)) return int(2**buf) def _is_number(s): # Returns true if s can be cast as a float, false otherwise try: float(s) return True except ValueError: return False def _is_integer(s): # Returns true if s is an integer. Used for testing int/array try: int(s) return True except TypeError: return False